

# Engineered-surface MOF nanoparticles for biomedical applications

E Bellido,<sup>a</sup> T Hidalgo,<sup>a</sup> M Gimenez-Marquez,<sup>a</sup> MV Lozano,<sup>a</sup> M Guillevic,<sup>a</sup> R Simon-Vazquez,<sup>c</sup> JM Santander-Ortega,<sup>b</sup> C Serre, A Gonzalez-Fernandez,<sup>c</sup> MJ Alonso,<sup>b</sup> T. Berthelot,<sup>d</sup> R. Gref,<sup>e</sup> P Couvreur,<sup>e</sup> C. Serre,<sup>a</sup> P Horcajada<sup>a</sup>

<sup>a.</sup> Institut Lavoisier, UMR CNRS 8180, Versailles, France.
 <sup>b</sup> Nanobiofar. CIMUS-UCS, Santiago de Compostela, Spain.
 <sup>c</sup> Immunology, CINBIO, Universidad de Vigo, Vigo, Spain.
 <sup>d</sup> LICSEN, CEA/DSMI/IRAMIS/NIMBE, Saclay, France
 <sup>e</sup> Institut Galien UMR CNRS 8612, Chatenay Malabry, France



Labex NanoSaclay June 11th 2014

# Outline

# $\checkmark$ MOFs introduction

# ✓ Presentation of MIL-100(Fe) NPs

# ✓ Heparin-engineered MIL-100(Fe) NPs

# ✓ Chitosan-engineered MIL-100(Fe) NPs



# Coordination polymers or Metal Organic Frameworks (MOFs)

• crystalline coordination polymers built from inorganic units (transition metal, lanthanide, alkaline...) and organic linkers bearing several complexant groups (carboxylates, phosphonates, amines, bi/terpyridines, ...) connected by exclusively strong interactions (ionocovalent)





Laboratoire d'Excellence en Nanosciences et Nanotechnolopies

# Coordination polymers or Metal Organic Frameworks (MOFs)

• crystalline coordination polymers built from inorganic units (transition metal, lanthanide, alkaline...) and organic linkers bearing several complexant groups (carboxylates, phosphonates, amines, bi/terpyridines, ...) connected by exclusively strong interactions (ionocovalent)



✓ these solids present cavities of various size and shape. (↑ storage capacity)

 $S_{area} = 500 - 6000 \text{ m}^2/\text{g}, V_p = 0.5 - 3.5 \text{ cm}^3/\text{g}, 3 - 60 \text{ Å}$ 

anoSaclau

nasciences et Nanotechnologie

narrow micro and mesoporosity... separation, storage

 <u>internal surface...</u> catalysis applications

Highly versatile hybrid network

adapted to the adsorption of a large number of molecules... **sponge!** 

✓ Potential biomedical applications: imaging, biologically active gas release, drug/cosmetic delivery ...

Horcajada et al, Chem. Rev., 2012

# Mesoporous iron(III) trimesate MIL-100 nanoparticles



Horcajada et al, Chem. Commun. 2007; Garcia-Marquez et al, Eur J Inorg Chem, 2012

# Mesoporous iron(III) trimesate MIL-100 nanoparticles



Horcajada et al, Chem. Commun. 2007; Garcia-Marquez et al, Eur J Inorg Chem, 2012

#### Coll. P Clayette, CE/ MIL-100 as promising drug nanocarrier P. Couvreur, UP-Sud

**Exceptional challenging drug payloads: 9-50 wt%** of antitumor, antiretroviral, antibiotic

60x liposomes; 4-40x polymer

Progressive release in 5 to 14 days!

without « burst effect»



ionosciences et Nonotechnologies

Horcajada et al., Nat. Mater., 2010; Agostoni et al, Adv Healthc Mater, 2013

## In vivo toxicity evaluation

Coll. P. Couvreur/R. Gret (Chatenay Malabry)



4-5 : MIL-100 degradation and excretion of Fe excess and trimesate ligand via urine and feaces → ↓ [Fe,L] in RES

NanoSaclay

Horcajada et al, Nature Mater, 2010; Baati et al., Chem. Sci, 2013

## Surface-engineering of MIL-100(Fe) nanoparticles



✓ Tuned biodistribution

- **Higher colloidal stability**
- ✓ Targeting abilities



- charged polysacharide

- Anticoagulant
- NPs evasion from MPS Inhibit complement system Hydrophilic  $\rightarrow \downarrow M\phi$  uptake  $\rightarrow$  Longer blood circulation times
- $\rightarrow$  Modify their *in vivo* fate

#### Challenging specific outer surface functionalization in porous solids

- **1.** Localization in the MOF nanoparticle (superficial or intrusion inside the pores)
  - $\rightarrow$  reduce porosity and replace the encapsulated molecules
- 2. Ability to promote a proper release of the drug encapsulated within the MOF
- 3. Stability of the coating

nosciences et Nanotechnolopies

Patent FR12/55065, 2012.

## Hep\_MIL-100(Fe) physicochemical characterization

Simple and biocompatible impregnation method



Coating thickness ~ 15 nm

D between heparin chains ~  $3nm << R_F ~ 8.4 nm \rightarrow \ll brush \gg conformation!$ 

### Hep\_MIL-100(Fe) colloidal stability





# Hep\_MIL-100(Fe): CK production (PBMs)

|                              |               | NPs dose<br>(µg/mL) | MIL-100(Fe) | Hep_MIL-100(Fe) |
|------------------------------|---------------|---------------------|-------------|-----------------|
| Type 1 cytokines             | IL-12p70      | 25                  | 1000        | 100             |
|                              |               | 250                 |             | 10              |
|                              | INF-γ         | 25                  | 1000        | 0               |
|                              |               | 250                 |             | 100             |
|                              | IL-2          | 25                  | 100         | 10              |
|                              |               | 250                 |             | 0               |
|                              | <b>TNF-</b> β | 25                  | 10          | 100             |
|                              |               | 250                 |             | 100             |
| Type 2 cytokines             | IL-10         | 25                  | 1000        | 100000          |
|                              |               | 250                 |             | 100000          |
|                              | IL-6          | 25                  | 100000      | 1000            |
|                              |               | 250                 |             | 10000           |
| Proinflammatory<br>cytokines | IL-8          | 25                  | 1000        | 1000            |
|                              |               | 250                 |             | 10000           |
|                              | <b>IL-1</b> β | 25                  | 10000       | production, t   |
|                              |               | 250                 |             | okine depende   |
|                              | TNF-α         | 25                  | Low with a  | 10000           |
|                              |               | 0.50                | 100000      | 100000          |

# Hep\_MIL-100(Fe) fluorescent labelling

#### Coll. M. Blanco, UNAV







2-13% wt of grafting

Fluorophore homogeneously distributed within the MOF particles

Small release (<20%) in cell culture medium after 24h

C.Tamames et al. J Mater Chem B, 2013



# Nano Saclay

en Nanosciences et Nanotechnolopies

Cell uptake slowed-down by the heparin-coating in J774 macrophages

# Conclusions

- Efficient engineering-surface of MIL-100(Fe) NPs with heparin via a green one-pot method, allows preserving their structure and porosity, and so their drug nanocarrier performances
- ✓ Heparin coating endow MIL-100(Fe) NPs with improved biological properties → more stable colloidal solutions with both a lower immune response and slower macrophage uptake
- Biocompatible MIL-100 nanoparticles with exceptional drug loadings and controlled releases...

→ promising drug nanocarriers !



# Thanks to :

Institut Lavoisier C. Serre, E. Bellido, M. Gimenez-Marguez, A. Garcia-Marguez, D. Cunha, S. Mahammed-Daoud, T. Baati, T. Hidalgo, C. Tamames-Tabar, M Guillevic, MV Lozano



#### Funding.

Cnano Labex NanoSaclay FP7 ERC BioMOFs ANR MatePro VIRMIL UniverSud PRES Pôle de competitivité Nanogalenique

U. Vigo

Spi-Bio P. Clayette C. Kreutz R. Yousfi

Nanosciences et Nanotechnolopies

Institut Galien P. Couvreur R. Gref T. Chalati V. Agostoni H. Hilareau H. Williame oSacla

CEA-Saclay T. Berthelot C. Baudin J. Polesel-Maris P. Jegou J. Crédou

H. Volland

Monastir Hospital U. Navarra (Tunisia) Pr. Kerkeni Dr. Neffati Dr. Nejim

(Spain) M Blanco C. Tamames

(Spain) A Gonzalez R Simon

E. Imbuluzqueta

CIMUS (Spain) MJ Alonso M Santander

# THANK YOU

