PRECONCENTRATION, RELEASE and DETECTION of microRNA by Combining Magnetic Hyperthermia and Electrochemistry Modules on a Microfluidic Chip

E-miRgency project

Djamila Kechkeche et Jean Gamby 10/12/2021

Why studying RNA is interesting ? Why lab on chip device is developed ?

Point-of-care testing for early pathology diagnosis

- small noncoding RNA
- Post-transcriptional regulation of gene expression
- → Biomarkers¹

Why studying RNA is interesting ? Why lab on chip device is developed ?

Point-of-care testing for early pathology diagnosis

- small noncoding RNA
- Post-transcriptional regulation of gene expression

→ Biomarkers¹

- > What are the advantages of lab on chip ?
 - ✓ Detection within 30 minutes
- ✓ Low sample volumes

✓ High sensisivity

✓ Multiple sample matrices

✓ High specificity

✓ Small product

1. Scand J Med Sci Sports. 2021;00:1–14.

History of this project

History of this project

History of this project

1. Preconcentration of DNA (off chip)

1. Preconcentration of DNA (off chip)

2. Release DNA by magnetic hyperthermia (on chip)

1. Preconcentration of DNA (off chip)

3. Electrochemical detection (on chip)

2. Release DNA by magnetic hyperthermia (on chip)

1. Preconcentration of DNA (off chip)

2. Release DNA by magnetic hyperthermia (on chip)

3. Electrochemical detection (on chip)

1. Synthesis of γ -Fe₂O₃ @SiO₂ Core-Shell Nanoparticles

A. Co-precipitation procedure = Massart method³

- Several advantages :
 - Rapid, easy to synthesize
 - No organic solvent, no surfactants
 - Large quantities (1L, [Fe] = 1M)
 - Size sorting to reduce polydispersity

Ferrofluid

 $d_0 = 12 \text{ nm}$ $\sigma = 0.35$

3. J.of Magn and Magne Mater. 1995,149, 6-9.

1. Synthesis of γ -Fe₂O₃ @SiO₂ Core-Shell Nanoparticles

B. Silica coating process⁴

4. J.of Magn and Magne Mater. 2009,321, 1408-1413.

2. Characterization of γ -Fe₂O₃ @SiO₂ Core-Shell Nanoparticles

Diamètre TEM	30 nm
Amine à la surface/CC	12000/CC
Potentiel Zeta	20 mV
Aimantation à saturation Ms	60 emu/g
SLP à 535 kHz	33 W/g

- > In two steps using strain promoted click chemistry
 - Introduction of alkyne groups onto the nanoparticle's surface
 - Copper free click chemistry with DNA-N₃

Grafting of single stranded DNA_{probes} (DNA modified with FITC)

Calibration curve Quantification of the probes DNA onto the nanoparticles

Capture of single stranded DNA_{target} (complementary DNA modified with CY5)

Capture of single stranded DNA_{target} (complementary DNA modified with CY5)

		ssDNA - Nanoparticles		ds DNA - Nanoparticles	
Disease	Name	ADN/NP	% grafted	ADN/NP	% hybridized
Skeletal/cardiac muscle	Mir 1	4,3	47,40	2,38	53,76
Liver	MiR 122	4,28	47,13	2,47	57,81
Skeletal/cardiac muscle	MIR 133a	3,9	42,97	1,93	49,62
Skeletal muscle	MiR 133b	4,86	53,55	2,78	57,11
Cardiac muscle	MiR 208a	3,82	42,13	2,19	57,47
Skeletal muscle	Mir 206	4,18	46,01	2,63	63

Biological sample

Duplex buffer	Biological media : plasma
1,63	1,4

Results

> Done :

- Patent : DI2021-0031 Paris Saclay 01/06/2021

- Article : Magnetic Hyperthermia on γ -Fe₂O₃ @SiO₂ Core-Shell Nanoparticles for multiple mi-RNA Detection *in process*

≻ To do :

- Release microRNA captured by controlled magnetic hyperthermia on microfluidic chip

- Multi-detection of microRNA on microfluidic chip

Funding

e-miRgency PROJECT **NanoSaclay**

DIMELEC PROJECT

Jean Gamby **Claire Poujouly**

Jean Michel Siaugue Emilie Secret Sirine El Mousli

Sébastien Banzet **Julien Siracuse**

Thank you for your attention

E-miRgency project

Djamila Kechkeche et Jean Gamby 12/10/2021

NonoSoclay