PhD project: Topological insulator/magnetic systems for spin-charge conversion

Journée annuelle du LabEx NanoSaclay January 13, 2022

DIANA SHE^{1,2,3},

LAETITIA BARINGTHON^{1,2,3}, ENZO RONGIONE^{1,4}, MARTINA MORASSI², GILLES PATRIARCHE², LUDOVIC LARGEAU², HENRI JAFFRES¹, NICOLAS REYREN¹, SUKHDEEP DHILLON⁴, PATRICK LE FEVRE³, JEAN-MARIE GEORGE¹, ARISTIDE LEMAITRE²

¹ Unité Mixte de Physique CNRS (**UMPhy**), Thales, Univ. Paris Saclay, Palaiseau

- ² Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Saclay, Palaiseau
- ³ Synchrotron SOLEIL (**SOLEIL**), L'Orme des Merisiers, Saint-Aubin
- ⁴ Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Paris

Why generate spin current?

BUT!

Large current densities are necessary ($\sim 10^{11}$ A/m⁻²) to reverse the magnetization

Possible solution:

Using surface states of TIs allows to reduce current densities

Spin-charge conversion in topological insulators (TI)

S. Zhang and A. Fert, Phys. Rev. B 94, 184423 (2016)

$Bi_{1-x}Sb_x$: Topological insulator (PhD Laetitia Baringthon)

STEM-HAADF, C2N

Bi_{1-x}Sb_x: Topological surface states (PhD Laetitia Baringthon)

ARPES measurements

Bi_{1-x}Sb_x: Spin-charge conversion (PhD Laetitia Baringthon & Enzo Rongione)

THz measurements

Efficient spin to charge conversion in BiSb/Co

BUT to qualify charge to spin conversion (magnetotransport measurements e.g. spin-orbit torque), FM layer with perpendicular magnetization is preferable

Time domain

Growth by MBE (Molecular Beam Epitaxy) at C2N

MBE Riber R2300

Phases of MnGa depending on Mn concentration

Duy Khang et al. , Journ.of Appl. Phys. 122, 143903 (2017)

Growth of MnGa by MBE (Molecular Beam Epitaxy)

Growth procedure:

Growth of GaAs buffer

AFM image: MnGa surface

Steps, flat surface

Growth of MnGa on GaAs(100) with (001) crystallographic orientation is confirmed

Magnetic properties of MnGa

SQUID (superconducting quantum interference device) measurements: field applied out of plane

Growth of BiSb by MBE (Molecular Beam Epitaxy)

Characterization of structural properties of BiSb/MnGa/GaAs(100)

STEM-HAADF, C2N

BiSb MnGa GaAs -1 5 nm Ga

EDX map of Ga, C2N

10 nm

Conclusions and perspectives

What has been done:

- Bi-dimensional growth of MnGa layers with flat surface
- Desirable magnetic properties of MnGa layers have been achieved
- Growth of BiSb on top of MnGa with (003) crystallographic orientation

What's next:

- Analysis of ARPES data acquired at Synchrotron SOLEIL
- Charge to spin current conversion (magnetostransport measurements, e.g. spin-orbit torque, magnetization switching) of BiSb/MnGa system