

Optically controlling the emission chirality of microlasers

Philippe St-Jean^{*1,} N. Carlon Zambon¹, A. Harouri¹, L. LeGratiet¹, I. Sagnes¹, A. Lemaître¹, S. Ravets¹, A. Amo^{1,2}, J. Bloch¹

¹Centre de Nanosciences et de Nanotechnologies (C2N), CNRS – Université Paris-Sud, France ²Physique des Lasers, Atomes et Molécules (PhLAM), CNRS – Université de Lille, France **philippe et jogn@c2n unsecleu fr*

*philippe.st-jean@c2n.upsaclay.fr

Orbital angular momentum (OAM) of light

Orbital angular momentum (phase vortices)

Can only take 2 values $(\pm\hbar)$

Unbounded degree of freedom (Lħ)

Technological relevance of OAM

- Multiplexing classical and quantum information
- Optical manipulation
- Improve sensing techniques

Generating OAM on-a-chip is challenging

Shaping the phase profile

Versatile, but difficult to integrate

Wang et al. Nat. Photon. 6, 488 (2012)

Integrated chiral lasers

Easily integrable, but not versatile

Miao et al. Science 353, 464 (2016)

Very challenging to develop devices that are both **versatile** and **integrated**.

Micropillars are the building blocks of our devices

Coupling micropillars to form photonic molecules

Galbiati et al., PRL 108, 126403 (2012)

Emulation of a benzene photonic molecule

Rotational symmetry → eigenstates can be classified by their angular momentum

Polarization dependence of the hopping energy

The coupling strength is greater for photons polarized **along** the link than for photons polarized **perdendicularly**

Galbiati et al., PRL 108, 126403 (2012)

Spin-orbit interaction of light in benzene

Spin-orbit interaction of light in benzene

V.G. Sala et al. Phys. Rev. X. 5, 011034 (2015)

Spin-orbit interaction of light in benzene

V.G. Sala et al. Phys. Rev. X. 5, 011034 (2015)

Generating a chiral emission by spin-polarizing the gain medium

 σ_+

Fine structure of the $|\ell| = 1$ manifold

Generating a chiral emission by spin-polarizing the gain medium

 σ_{-}

Fine structure of the $|\ell| = 1$ manifold

Chiral lasing in the $|\ell| = 1$ manifold

N. Carlon Zambon, **PSJ** et al. *Nat. Photon.* **13**, 283 (2019)

Retrieving the phase of the chiral emission ($|\ell| = 1$)

$$|-1,\sigma_{-}\rangle \qquad |+1,\sigma_{+}\rangle$$

$$\boxed{-2\pi} \qquad \boxed{+2\pi}$$

N. Carlon Zambon, <u>PSJ</u> et al. *Nat. Photon.* **13**, 283 (2019)

Retrieving the phase of the chiral emission ($|\ell| = 1$)

Retrieving the phase of the chiral emission ($|\ell| = 2$)

N. Carlon Zambon, <u>PSJ</u> et al. *Nat. Photon.* **13**, 283 (2019)

Conclusion

1- Optically controlling the emission chirality in an integrated microstructure;

2- Possibility to control distinct values of OAM (L=1 and L=n/2-1)

3- Emergence at high excitation power of an optical bistability involving modes carrying distinct OAM

N. Carlon Zambon, <u>PSJ</u> et al. *Nat. Photon.* **13**, 283 (2019) N. Carlon Zambon, <u>PSJ</u> et al. *Opt. Lett.* **44**, 4531 (2019)

1- Designing OAM microsalers with optically controllable chirality

2- Optical bistability between modes carrying distinct OAM

3- Conclusion and perspectives

Region of interest for the optical bistability

Evolution of the emission energy in the bistability region

Pump irradiance (kW/cm²)

Evolution of the spatial profile in the bistability region

Evolution of the spatial profile in the bistability region

Evolution of the spatial and phase pattern in the bistability

Modeling the OAM bistability

Condition for bistability

$$g_{1,2} = g_0 (1 - \varepsilon_s I_{1,2} - \varepsilon_c I_{2,1})$$

$$(\varepsilon_c > \varepsilon_s)$$