| English
WEB Nano Saclay

Faits marquants 2017

13 octobre 2017

La supraconductivité peut être induite dans un matériau non supraconducteur par la « fuite » de paires d’électrons supraconducteurs venant d’un supraconducteur adjacent. C’est l’effet de proximité. Si le matériau normal est du graphène, sa structure électronique très particulière influence fortement cet effet. Par exemple, on peut observer des formes exotiques du mécanisme de fuite des paires (la réflexion d’Andreev). Au-delà de l’intérêt fondamental, il en découle un potentiel technologique : la possibilité de moduler un super-courant (à travers du graphène) à l’aide d’une tension de grille, une sorte d’effet « transistor supraconducteur ».

En dépit de l’attrait des supraconducteurs à haute température critique dans ce contexte, les réalisations expérimentales ont été exclusivement faites avec des supraconducteurs à basse température critique. Les travaux réalisés à l’Unité Mixte de Physique démontrent l’effet de proximité entre un supraconducteur à haute température critique et du graphène. Dans ces expériences, les effets de la grille électrostatique sont dus à la transmission parfaite des paires supraconductrices à travers une barrière d’énergie (effet tunnel de Klein) qui est modulée par des interférences quantiques contrôlées par le dopage du graphène. Il est remarquable que ce type d’interférences domine le transport même sans l’utilisation d’un graphène extrêmement propre, contrairement au cas des supraconducteurs à basse température critique. Ces résultats ouvrent la voie d’une nouvelle famille de dispositifs de type Josephson modulables par une grille électrostatique à haute température critique, et reposant sur l’utilisation de graphène grande échelle.

Ces travaux ont récemment été publiés dans Nature Physics (Reference: Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene)

Contact: Javier E. Villegas, Unité Mixte de Physique CNRS-THALES

Collaboration: Department of Engineering, University of Cambridge, UK

15 mai 2017

S’inspirer du fonctionnement du cerveau pour concevoir des machines de plus en plus intelligentes, telle est l’idée du biomimétisme. Le principe est déjà à l’œuvre en informatique via des algorithmes pour la réalisation de certaines tâches comme la reconnaissance d’image. C’est ce qu’utilise Facebook pour identifier des photos par exemple. Mais le procédé est très gourmand en énergie.

Des chercheurs de l’Unité mixte de physique CNRS/Thales et leurs collaborateurs viennent de franchir une nouvelle étape dans ce domaine en créant directement sur une puce électronique une synapse artificielle capable d’apprentissage. Ils ont également développé un modèle physique permettant d’expliciter cette capacité d’apprentissage. Cette découverte ouvre la voie à la création d’un réseau de synapses, circuit plus complexe, et donc à des systèmes intelligents moins dépensiers en temps et en énergie.

Référence : Learning through ferroelectric domain dynamics in solid-state synapses.

Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia.

Nature communications 8, 14736 (2017)

Contact NanoSaclay: Vincent Garcia, Unité Mixte de Physique CNRS/Thales, Palaiseau

Collaborations:

 

 

Retour en haut