| English
WEB Nano Saclay

Projets 2016

29 mars 2016

Résonateurs supraconducteurs en silicium ultra-dopé

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

SIRE

2016

IEF

CSNSM

35 k€

3 ans

 

 

Titre

Résonateurs supraconducteurs en silicium ultra-dopé

Porteur

Francesca Chiodi

Date de démarrage

Juin 2016

Présentation du projet

Le projet SIRE propose une étude fondamentale sur les propriétés à haute fréquence du silicium supraconducteur. Cette étude, couplée à la récente démonstration de jonctions Josephson et SQUIDs tout silicium, ouvre la voie à une électronique quantique supraconductrice tout silicium de fort impact pour l’information quantique. Les partenaires du projet sonderont, dans des résonateurs coplanaires et de type ‘lumped’, les mécanismes des pertes et la durée de vie des quasiparticules en fonction du dopage et des dimensions dans la limite 2D et 1D. Ils sonderont également les effets de grille pour moduler les propriétés de résonance, exploitant la forte dépendance du Si supraconducteur du nombre de porteurs. Enfin, ils testeront la possibilité matérielle de réaliser des Détecteurs à Inductance Cinétique en Si:B, un matériau très prometteur grâce à sa forte inductance cinétique, grande résistivité et Tc facilement ajustable à l’impédance du vide.

29 mars 2016

Quantum Phase Transitions in mesoscopic circuits

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

QPT

2016

LPN

LPS

104 k€

3 ans

 

 

Titre

Quantum Phase Transitions in mesoscopic circuits

Porteur

Frédéric Pierre

Date de démarrage

Septembre 2016

Présentation du projet

Les transitions de phase quantique sont induites par les fluctuations quantiques dont l’augmentation au voisinage du point critique se traduit par l’émergence d’une physique différente. Cette physique dite quantum critique est associée aux comportements exotiques de nombreux systèmes électroniques fortement corrélés (fermions lourds, supraconductivité haute température…). Toutefois, dans ces systèmes complexes, l’origine microscopique et la modélisation théorique des transitions de phase quantique restent controversées. Dans ce projet, nous explorerons la physique quantum critique avec des circuits électriques comprenant des conducteurs quantiques complètement caractérisés. Ceci permettra une comparaison directe entre expériences et prédictions quantitatives qui était jusqu’à présent impossible. Nous étudierons les transitions de phase quantique avec un conducteur quantique modèle inséré dans un environnement dissipatif, et dans le cadre de l’effet Kondo « multi-canaux » grâce à notre récente implémentation de l’effet Kondo de ‘charge’.

29 mars 2016

Etude de briques fondamentales pour la réalisation d’accélérateurs compacts de particules

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

AXEL

2016

Thales

IEF

50 k€

2 ans

 

 

Titre

Etude de briques fondamentales pour la réalisation d’accélérateurs compacts de particules

Porteur

Jean-Paul Mazellier

Date de démarrage

Juin 2016

Présentation du projet

Le projet AXEL est dédié à l’étude amont des briques nécessaires à la réalisation d’un accélérateur de particule compact monolithique sur puce tirant profit des procédés de fabrication microélectronique. Une partie de l’étude concerne la réalisation d’une nano-source électronique comme source d’électrons pour l’accélérateur compact. L’autre partie est consacrée à l’utilisation de circuits photoniques, notamment plasmoniques, afin de générer des champs optiques sur puce susceptibles de fournir l’accélération d’un faisceau électronique. La conception d’un accélérateur complet sera étudiée afin de proposer une structure innovante, pouvant ouvrir la voie à une nouvelle génération d’instruments compacts pour les domaines de la recherche universitaire, médicale et pour l’industrie.

29 mars 2016

Hétérostructures verticales de matériaux 2D organisées et étudiées par Microscopie optique à ultra-haute résolution

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

HeVeRest

2016

IRAMIS/NIMBE

LPN, IMMM

104 k€

3 ans

 

 

Titre

Hétérostructures verticales de matériaux 2D organisées et étudiées par Microscopie optique à ultra-haute résolution

Porteur

Renaud Cornut

Date de démarrage

Septembre 2016

Présentation du projet

Les matériaux 2D comme le graphène, le nitrure de bore hexagonal ou les dichalcogénures de métaux de transition (MoS2, WSe2, etc) ont un très fort potentiel dans des domaines comme l’énergie (électro-catalyse, batteries, photovoltaïque), l’électronique et l'optoélectronique. De fait, leurs propriétés électroniques, optiques, mécaniques ou électrochimiques, focalisent l’attention d’une partie de plus en plus importante de la communauté. Les systèmes composés d’empilements de différentes couches, appelés hétérostructures de van der Waals sont particulièrement attrayants: cela permet de moduler à façon les propriétés des matériaux, et d’améliorer encore les performances obtenues.

L’objectif général du projet HevErest est de contribuer à ce domaine tant pour la production que pour l’analyse des hétérostructures de matériaux 2D. L’originalité de l’approche réside dans l’utilisation d’une nouvelle technique de microscopie optique à très haute résolution (BALM, pour « Backside Absorbing Layer Microscopy ») pour positionner, orienter et étudier les empilements de manière très fine. La technique est aussi utilisée conjointement avec de la microscopie électrochimique (SECM) pour apporter un éclairage inédit sur les propriétés de transport d’espèces chimiques et d’électrons obtenues avec ces systèmes.

29 mars 2016

Matériaux radiosensibles chargés aux nanoparticules pour la dosimétrie 2D et 3D

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

MARAthON

2016

LIST/LCD

LCP, LIST/DM2I

50 k€

2 ans

 

 

Titre

Matériaux radiosensibles chargés aux nanoparticules pour la dosimétrie 2D et 3D

Porteur

Hugues Girard

Date de démarrage

Juin 2016

Présentation du projet

Le projet MARAthON vise le développement de nouveaux matériaux radiosensibles (polymères ou gels) dopés aux nanoparticules pour de la mesure de dose 2D ou 3D en radiothérapie. La complexification des faisceaux utilisés en radiothérapie pour améliorer le dépôt de dose délivrée à la tumeur tout en préservant les tissus sains, rend la mesure de dose cruciale mais difficilement réalisable avec les dispositifs existants. L’utilisation de matériaux radiosensibles pour la dosimétrie est basée sur une modification d’une ou plusieurs des propriétés physicochimiques du matériau après irradiation. Les partenaires proposent dans ce projet d’incorporer des nanoparticules, connues pour leur effet radiosensibilisant en thérapie des cancers, dans des matrices de détection et d’en étudier et maitriser les effets en vue d’une application en dosimétrie.

29 mars 2016

Transport électronique dans les membranes semi-conductrices

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

TRAMES

2016

LPMC

IEF

40 k€

2 ans

 

 

Titre

Transport électronique dans les membranes semi-conductrices

Porteur

Lucio MARTINELLI

Date de démarrage

Juin 2016

Présentation du projet

Les nitrures semi-conducteurs sont parmi les matériaux les plus prometteurs pour les dispositifs électroniques et opto-électroniques de nouvelle génération qui pourront permettre des économies d’énergie considérables dans les années à venir. Les ampoules à LEDs à base de nitrures sont déjà une réalité, et des dispositifs de puissance pour applications aux « réseaux intelligents », ou à la conversion d’énergie sont en cours de développement. En dépit de l’impact potentiel de la technologie des nitrures, leurs propriétés fondamentales sont encore mal connues, et la conception des dispositifs reste souvent basée sur une approche empirique.

L’objectif du projet TRAMES est de développer un nouvel outil de spectroscopie basé sur la transmission d’électrons à travers des membranes de nitrures semi-conducteurs, qui fournira un accès direct aux paramètres de la bande de conduction et aux processus de transport et de recombinaison.

29 mars 2016

Nano-SPectro-IMagerie infrarouge appliquée à la vectorisation de principes actifs

Acronyme

Année

Laboratoire

Collaboration(s)

Budget

Durée

Nano-SPIM

2016

LCP

ISMO

37 k€

2 ans

 

 

Titre

Nano-SPectro-IMagerie infrarouge appliquée à la vectorisation de principes actifs

Porteur

Alexandre Dazzi

Date de démarrage

Juin 2016

Présentation du projet

Des nanomédicaments de plus en plus sophistiqués sont élaborés, afin de permettre la vectorisation de « cocktails » synergiques de molécules actives, et portent en surface des ligands greffés de manière covalente pour cibler des tumeurs, tissus ou organes infectés. La distribution de la taille des vecteurs, leur charge en molécule(s) active(s) et la composition chimique de la surface des nanoparticules sont des éléments clés qui gouvernent le devenir in vivo.

En couplant l’AFM et la spectroscopie infrarouge à l’échelle nanométrique, ce projet interdisciplinaire vise à apporter un outil puissant d’analyse qui permettra pour la première fois de caractériser individuellement chaque nanoparticule (identification et quantification de molécules actives et des ligands) et de la localiser au sein d’une cellule cancéreuse.

 

Retour en haut