Spontaneous and stimulated emission control in Confined Tamm-Plasmon structures

Laboratoire de Photonique et de Nanostructures, CNRS, Marcoussis, FRANCE

O. Gazzano, C. Belacel, X. Lafosse, S. Michaelis de Vasconcellos, <u>A. Lemaître</u>, P. Senellart

Institut Lumière-Matière, Université Lyon 1, France, C. Symonds, J. Bellessa

LCFIO, Orsay, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, J.J. Greffet

Motivations

Increase light-matter interaction

• Light extraction

- Efficient single photon sources
- Larger optical non linearities
 - Low-threshold Lasers

InAs/GaAs self assembled QD

Quantum efficiency ~ 1

n=1

Only 1-5 % photon can be collected!

M. Kaliteevski et al Physical Review B 76, no. 16 (2007)

Strong coupling regime: Tamm-plasmon exciton polaritons

2 InGaAs/AlGaAs QWs in each 15 last high refractive index layers

 $45x AI_{0.05}GaAs/AIAs \lambda/4 pairs$

Reflectometry experiments

Strong coupling Tamm plasmon/exciton

- Rabi splitting : 12 meV
- Thin polariton lines compared to splitting

 Simulations with a transfer matrix method

Hybrid state luminescence

- Strong polaritonic emission
 - Emission in TE and TM

- Dispersion relation
- Polaritonic emission
- Possible polaritonic non linearities

OD Tamm plasmon modes

3D FDTD Calculcation Collaboration J. Bellessa LPMCN – Lyon - France

OD Tamm plasmon modes: experimental evidence

ABORATOIRE

OD Tamm plasmon modes: experimental evidence

ABORATOIRE

Controlling spontaneous emission with Confined Tamm plasmon modes

Controlling spontaneous emission

Controlling spontaneous emission

Controlling spontaneous emission

Light extraction using Purcell effect

 $F_p\gamma$: emission rate into the mode $\Gamma\gamma$: emission rate into other modes

OD Tamm plasmon modes: control of spontaneous emission

Deterministic coupling

Spatial coupling Energy coupling

Gold disk :

- Thickness : 50nm
- Diameter : 2.5µm
- Quality factor : 490

<u>QD / gold disk distance :</u> 44nm

QD1-QD2 distance : ~300nm

PHOTONIOUI

Control of spontaneous emission over 2 orders of magnitude

O. Gazzano, et al Phys. Rev. Lett. 107, 247402 (2011).

Single photon source ?

O. Gazzano, et al. Appl. Phys. Lett. 100, 232111 (2012)

OD Tamm plasmon modes: single photon source

Extraction in optimized structures

0-

Controlling stimulated emission with Confined Tamm plasmon modes

Lasing in 2D Tamm

Low power polaritonic emission

xcitation

Power

- Screening of the strong coupling emission at bare Tamm energy
- High excitation intense emission at k=0

C. Symonds et al., APL mars 2012

Non linear emission

Lasing in confined Tamm states

• Disk diameters 1⇔10µm

4µm diameter

Lasing from lower energy mode

Reduction of the threshold

• Threshold decreases with disk diameter

Lower threshold

for $4\mu m$

Reduction of the threshold

• Threshold decreases with disk diameter

$$P_{th} \propto \frac{1}{\beta Q}$$

• Minimum at 4µm

Accepted in Nano Letters

Electric control compatibility

Easy electrical control

Conclusions

Confined Tamm-plasmon modes

Easy implementation

Highly customizable: think of new lateral confinement geometries !

High extraction efficiency

Electrical pumping