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Outline

• Photonic LDOS and optical antennas

• Superradiant emitters coupled to optical 
antennas

• From nano-antennas to metamaterials

• Conclusion
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Intro: Optical nano-antennas
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Optical nano-antennas used as emitters

When properly tuned, an optical antenna 
can enhance the emission rate of the 
emitter (Purcell effect).

Transition rate of a two-level quantum emitter located ar r0 (Fermi’s golden rule):
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The LDOS provides 
a link between the 
quantum and the 

classical descriptions
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An intuitive description of the LDOS

-> The LDOS describes the number of radiative decay 
channels available for a given emitter, at the emitter position.

-> The luminescence properties of a quantum emitter are 
directly related to its environment.
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Some examples of nano-antennas
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Optical properties of Au ring antennas

• We use the boundary element method to analyze the interaction 
between a dipolar emitter and a Au ring antenna.

• We assess the performances of the ring antenna based on:

• The total power extracted from the emitter:

• The power reemitted as light:

Au

Bharadwaj et al., Advances in Optics and Photonics 1, 438–483 (2009)
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Ring with size comparable to λ:
High directivity

Directivity:  D = 4 π p(θ, φ) /Prad Teperik and Degiron, PRB 2011
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Ring much smaller than λ : 
dipolar SP resonance

a = 80 nm
b = 100 nm
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What if the emitters are periodically 
spaced and emit light in phase?
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What if the emitters are periodically 
spaced and emit light in phase?

This condition arises when the emitters are superra diant

Spontaneous emission (e.g. fluorescence) of N emitt ers :

Superradiance of N emitters:

-Isotropic emission 

-Incoherent phase

-Total intensity ≈ N

-Anisotropic emission 

-Emitters are in phase

-Total intensity ≈ N2
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Lattice of  coherent dipole emitters

Power η(h) [η(v)] radiated by a lattice 
of horizontal [vertical] dipoles:

Solid curves: analytical calculations
Points: numerical FEM calculations
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Horizontal dipole emitters 
coupled with Au rings

Rayleigh
anomalies Plasmon

resonance

2 ra

1 µm 1 µm
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The case of vertical dipole emitters

Teperik and Degiron, PRL 108 147401 2012
Teperik and Degiron, PRB 86, 245425 2012

Close to strong coupling
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Metal 
nanoparticle:

artificial “atom”

Metamaterials are artificially structured composites that mimic the 
behavior of homogeneous media.

From optical antennas to 

metamaterials

λλλλ

1 µm

Artificial 
magnetism 

(IEF/LPN 2009)

Negative index 
(Purdue 2005)

“carpet” 
invisbility cloak
(Cornell 2009)
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The homogenization problem

How can we tell that a given structure 
really acts as an effective homogeneous 
medium?

?

εeff, µeff
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The homogenization problem

How can we tell that a given structure 
really acts as an effective homogeneous 
medium?

• Easy at microwave 
frequencies (direct 
visualization tools)

• What can we do in the 
optical regime?

Experiments at 10 GHz

Justice, et al. Opt. Express 14, 8694 (2006).

n<0



Matinée NanoSaclay -IOGS June 21st 2013

Experimental evidence: probing the LDOS with

Photoluminescence (PL) measurements
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From small rings…
(radius ~80 nm)

… to large rings 
(radius ~120 nm)

ALL STRUCTURES HAVE THE SAME PERIOD (600 nm)

Structures under investigation

8 intermediate structures 
between these 2

1 µm
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PL Enhancement spectra

Passive transmission spectra
(FTIR measurements):

Same spectral signature 
(far-field response in both 

cases)
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Influence of spacer thickness

Glass substrate
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Very different behavior than for a single antenna
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Looking at the literature

100 nm Regime 1: dominated by 
individual nanoparticles

Regime 2: can be 
explained by effective 

medium theory

Ag island film
= metamaterial

(emission max
at 555 nm)
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Back to our measurements

Glass substrate
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To act as a an effective medium, the 
plasmonic array must be used in the 
intermediate/far field regime.
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Perspectives

(In preparation)

QD emitter

Tailoring the LDOS with patterned metamaterial arrays
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Conclusion

Arrays of optical antennas are very different from single antennas

-in the near-field: strong non-local effects (not treated here)

-in the intermediate and far-field: the properties of the array
are dictated by its effective macroscopic properties (metamaterial
regime)

Also: opportunities for superradiance.
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The ring’s response is
independent from the 
position of the emitter
and the orientation of its
dipolar moment.

Properties of the dipolar resonance

Teperik and Degiron, PRB 2011
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PL Enhancement spectra

Passive transmission spectra
(FTIR measurements):

Same spectral signature 
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